Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Chloro-6-(2-fluorobenzoyl)-1,3-benzoxazol-2(3H)-one

Abdullah Aydın, ${ }^{\text {a }}$ Tijen Önkol, ${ }^{\text {b }}$
Mehmet Akkurt, ${ }^{\text {c* }}$ Orhan Büyükgüngör ${ }^{\mathbf{d}}$ and Serdar Ünlü ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics Education, Kastamonu Education Faculty, Gazi University, 37200 Kastamonu, Turkey, ${ }^{\mathbf{b}}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey, ${ }^{\text {c }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit-Samsun, Turkey

Correspondence e-mail: aaydin@gazi.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.073$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClFNO}_{5}$, has a non-planar configuration. The crystal structure is stabilized by the formation of bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} / \mathrm{O}^{\prime}$ hydrogen bonds involving the oxazole N atom and the two carbonyl O atoms of symmetry-related molecules.

Comment

Benzothiazolinone/2-benzoxazolinone derivatives exhibit a variety of pharmacological effects, including analgesic and anti-inflammatory activity (Fereira et al., 1995; Ünlü et al., 2003).

(I)

The molecular structure of the title compound, (I), a new benzoxazolinone derivative, is shown in Fig. 1, and selected geometric parameters are presented in Table 1. The hydrogenbond contacts are shown in Fig. 2 and details are given in Table 2. The double-bond length for $\mathrm{C} 1=\mathrm{O} 2$ is 1.204 (2) \AA, and the $\mathrm{C} 4-\mathrm{Cl} 1$ and $\mathrm{C} 14-\mathrm{F} 1$ bond lengths are 1.7410 (16) and 1.356 (2) \AA, respectively. The bond lengths observed in (I) have normal values, and both the bond lengths and angles are comparable to those observed in related structures (Allen et al., 1987; Aydın et al., 2002).

The bicylic benzoxazole system of (I) is planar to within $0.015 \AA$, with the maximum deviations from the mean plane through the benzoxazole ($\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 2-\mathrm{C} 7$) being -0.010 (1), 0.015 (1) and -0.012 (1) \AA for atoms N1, C3 and C 5 , respectively. The dihedral angle between the benzoxazole and fluorophenyl ring systems is $74.7(1)^{\circ}$, showing some deviation from planarity, as observed for similar compounds in the literature (Guilardi et al., 2002; Chinnakali et al., 1990).

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 5 January 2004 Accepted 14 January 2004 Online 23 January 2004

The crystal structure of (I) is stabilized by $\mathrm{N}-\mathrm{H} \cdots$ O-type hydrogen-bond contacts, as shown in Fig. 2 (Table 2).

Experimental

A mixture of 200 g polyphosphoric acid (PPA), 0.1 mol of 5-chloro-2-oxo-3 H -benzoxazole and 0.12 mol of 2-fluorobenzoic acid was heated at 413 K with stirring for 7 h . The mixture was then poured into a 800 ml of ice water and stirred for 8 h . The precipitate was washed with water to neutral pH , dried and crystallized from toluene (Pilli et al., 1993).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{ClFNO}_{3}$
$M_{r}=291.66$
Orthorhombic, Pbca
$a=7.723$ (7) Å
$b=14.255$ (1) \AA
$c=22.530(2) \AA$
$V=2480.4(4) \AA^{3}$
$Z=8$
$D_{x}=1.562 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $\mathrm{K} \alpha$ radiation
> Cell parameters from 5958 \quad reflections
> $\theta=3.0-56.4^{\circ}$
> $\mu=0.33 \mathrm{~mm}^{-1}$
> $T=293 \mathrm{~K}$
> Plate, colorless
> $0.62 \times 0.33 \times 0.19 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer

ω scans

Absorption correction: by integration (Stoe \& Cie, 2002)
$T_{\text {min }}=0.823, T_{\text {max }}=0.941$
10796 measured reflections
3080 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0348 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.0012(2)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{Cl} 1-\mathrm{C} 4$	$1.7410(16)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.204(2)$
$\mathrm{F} 1-\mathrm{C} 14$	$1.356(2)$	$\mathrm{O} 3-\mathrm{C} 8$	$1.2099(19)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.3876(19)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.343(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.3837(18)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.3820(18)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7$	$107.10(11)$	$\mathrm{Cl} 1-\mathrm{C} 4-\mathrm{C} 5$	$120.41(11)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$110.35(13)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 2$	$108.97(12)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 1$	$130.40(15)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$128.15(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$122.10(14)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 9$	$119.61(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$107.51(13)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 5$	$119.98(14)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$	$106.07(13)$	$\mathrm{F} 1-\mathrm{C} 14-\mathrm{C} 9$	$118.98(16)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$132.54(13)$	$\mathrm{F} 1-\mathrm{C} 14-\mathrm{C} 13$	$117.61(18)$
$\mathrm{Cl} 1-\mathrm{C} 4-\mathrm{C} 3$	$116.58(12)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2}$	0.86	2.17	$2.9243(17)$	147
$\mathrm{~N} 1-\mathrm{H} 1 \cdots 3^{\mathrm{ii}}$	0.86	2.60	$2.9448(17)$	105

Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, 1-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, z$.

Figure 2
A view of the crystal packing in (I), showing the intermolecular hydrogenbond contacts (dashed lines) between neighbouring molecules.

All the H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were constrained to be 1.2 times $U_{\text {eq }}$ of the carrier atom.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995) and WinGX publication routines (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Aydın, A., Arıcı, C., Akkurt, M., Akkoç, Y. \& Şahin, M. F. (2002). Anal. Sci. 18, 1401-1402.
Chinnakali, K., Sivakumar, K. \& Natarajan, S. (1990). Acta Cryst. C46, 405407.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fereira, S. H., Lorenzetti, B. B., Devissaguet, M., Lesieur, D. \& Tsouderos, Y. (1995). Br. J. Pharmacol. 114, 303-308.

Guilardi, S., Machado, A. E. H., Resende, J. A. L. C. \& Franca, E. F. (2002). Acta Cryst. E58, o985-o987.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Pilli, G., Erdoğan, H. \& Sunal, R. (1993). Arzneim. Forsch. 43, 1351-1354.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED 32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Ünlü, S., Önkol, T., Dündar, Y., Ökçelik, B., Küpeli, E., Yeşilada, E., Noyanalpan, N. \& Şahin, M. F. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 353-361.

